Search results

Search for "electron transport materials" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.

Organic electron transport materials

  • Joseph Cameron and
  • Peter J. Skabara

Beilstein J. Org. Chem. 2024, 20, 672–674, doi:10.3762/bjoc.20.60

Graphical Abstract
  • functionalities such as cyano groups [1]. This is one of the key advantages of organic electron transport materials compared with inorganic materials – the molecular structures can be easily tuned to achieve desired characteristics. The diversity of materials used as electron transport layers is also an advantage
  • required for these redox reactions to progress is taken into consideration, a lowest unoccupied molecular orbital (LUMO) energy ≤ −4.0 eV (relative to vacuum) is required for air stable electron transport materials [2] and this is a common target for researchers developing these types of materials. In
  • general, this restriction also applies to n-dopants, compounds that reduce electron transport materials, which are important for increasing the electrical conductivity of n-type materials. However, there have been elegant solutions developed to counteract this, where air-stable dimers can be used which
PDF
Album
Editorial
Published 28 Mar 2024

Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application

  • Recep Isci and
  • Turan Ozturk

Beilstein J. Org. Chem. 2023, 19, 1849–1857, doi:10.3762/bjoc.19.137

Graphical Abstract
  • conventional device architecture of ITO/PEDOT:PSS/TFB/TAPC:TCTA:emitter (DMB-TT-TPA (8))/TPBi/LiF/Ca/Ag, where TFB, TCTA/TAPC, and TPBi acted as hole transport, hole transporting host, and electron transport materials, respectively (Figure S2 in Supporting Information File 1). The current efficiency–luminance
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2023

Quinoxaline derivatives as attractive electron-transporting materials

  • Zeeshan Abid,
  • Liaqat Ali,
  • Sughra Gulzar,
  • Faiza Wahad,
  • Raja Shahid Ashraf and
  • Christian B. Nielsen

Beilstein J. Org. Chem. 2023, 19, 1694–1712, doi:10.3762/bjoc.19.124

Graphical Abstract
  • Abstract This review article provides a comprehensive overview of recent advancements in electron transport materials derived from quinoxaline, along with their applications in various electronic devices. We focus on their utilization in organic solar cells (OSCs), dye-sensitized solar cells (DSSCs
  • transport applications. Furthermore, ongoing research efforts aimed at enhancing their performance and addressing key challenges in various applications are presented. Keywords: electron transport materials; non-fullerene acceptors; n-type semiconductors; organic electronics; quinoxalines; Introduction
PDF
Album
Review
Published 09 Nov 2023

Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity

  • Swagat K. Mohapatra,
  • Khaled Al Kurdi,
  • Samik Jhulki,
  • Georgii Bogdanov,
  • John Bacsa,
  • Maxwell Conte,
  • Tatiana V. Timofeeva,
  • Seth R. Marder and
  • Stephen Barlow

Beilstein J. Org. Chem. 2023, 19, 1651–1663, doi:10.3762/bjoc.19.121

Graphical Abstract
  • for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4 to 1gH, 1hH, and 1iH, and with Na:Hg to 1g2 and 1h2
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2023
Other Beilstein-Institut Open Science Activities